Polyethylene glycol-grafted bovine pericardium: a novel hybrid tissue resistant to calcification.

نویسندگان

  • S C Vasudev
  • T Chandy
چکیده

Calcification is a frequent cause of the clinical failure of bioprosthetic heart valves fabricated from glutaraldehyde pretreated bovine pericardium (GATBP). An investigation was made of the grafting of different molecular weight polyethylene glycol (PEG 600, 1500, 4000 and 6000) via glutaraldehyde (GA) linkages to bovine pericardium (BP) and of their stability and calcification. The process of the calcification profile was studied by in vitro experiments via incubating pericardial samples in a metastable solution of calcium phosphate. Calcification of bovine pericardium grafted with PEG 6000 was significantly decreased compared to low molecular weight PEG grafts or Sodium dodecyl sulphate- (SDS) and GA-treated tissues. The mechanical properties of these modified tissues after enzyme (Trypsin) digestion and calcification were investigated. The biocompatibility aspects of grafted tissues were also established by monitoring the platelet adhesion, octane contact angle and water of hydration. PEG 6000-grafted tissues retained the maximum strength in trypsin buffer and calcium phosphate solutions. Scanning electron micrographs revealed that the PEG-grafted bovine pericardium had substantially inhibited the platelet-surface attachment and their spreading. It is conceivable that high molecular weight polyethylene glycol-grafted pericardium (a hybrid tissue) may be a suitable calcium-resistant material for developing prosthetic valves due to their stability and biocompatibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar(+) plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon partic...

متن کامل

The Immune Responses and Calcification of Bioprostheses in the α1,3-Galactosyltransferase Knockout Mouse.

BACKGROUND The study aim was to evaluate the immune reaction, difference of degenerative calcification, and anti-calcification effect of decellularization with or without α-galactosidase in bovine pericardium and porcine heart valves, using an α1,3-galactosyltransferase (α-Gal) knockout (KO) mouse model. METHODS In order to elucidate the anti-calcification effect of decellularization with or ...

متن کامل

Calcification of decellularized and alpha-galactosidase-treated bovine pericardial tissue in an alpha-Gal knock-out mouse implantation model: comparison with primate pericardial tissue.

OBJECTIVES Immune reaction against the α-Gal(Galα1,3-Galβ1-4GlcNAc-R) epitope is known to be one of the important factors for calcification of bioprostheses. The genetically manipulated α-Gal knock-out (KO) mice lacking the α-Gal epitope and containing anti-α-Gal antibodies may simulate an immune response against xenoantigens in primates including humans. The aims of this study were (i) to comp...

متن کامل

Simple, Practical and Eco-friendly Reduction of Nitroarenes with Zinc in the Presence of olyethylene Glycol Immobilized on Silica Gel as a New Solid–liquid Phase Transfer Catalyst in Water

Polyethylene glycol was easily grafted to silica gel and used as a solid–liquid phase transfer catalyst in the reduction of aromatic nitro compounds. This silica-grafted polyethylene glycol is proved to be an efficient heterogeneous catalyst in the reduction of nitroarenes to the corresponding aromatic amines with zinc powder in water. The reduction reactions proceeded efficiently with exce...

متن کامل

Improved Adhesion, Growth and Maturation of Vascular Smooth Muscle Cells on Polyethylene Grafted with Bioactive Molecules and Carbon Particles

High-density polyethylene (PE) foils were modified by an Ar(+) plasma discharge and subsequent grafting with biomolecules, namely glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C) or BSA and C (BSA + C). As revealed by atomic force microscopy (AFM), goniometry and Rutherford Backscattering Spectroscopy (RBS), the surface chemical structure and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials science. Materials in medicine

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 1999